import tensorflow as tf
tf.reset_default_graph()v1 = tf.Variable(tf.constant(1.0, shape=[1]), name="v1")v2 = tf.Variable(tf.constant(2.0), name="v2")v3 = tf.Variable(2.0, name="v3")result1 = v1 + v2result2 = v1 + v3print(v1) # <tf.Variable 'v1:0' shape=(1,) dtype=float32_ref>print(v2) # <tf.Variable 'v2:0' shape=() dtype=float32_ref>print(v3) # <tf.Variable 'v3:0' shape=() dtype=float32_ref>print(result1) # Tensor("add:0", shape=(1,), dtype=float32)print(result2) # Tensor("add_1:0", shape=(1,), dtype=float32)with tf.Session() as sess:
tf.global_variables_initializer().run()# sess.run(tf.global_variables_initializer()) print(sess.run(v1)) # [ 1.] print(sess.run(v2)) # 2.0 print(sess.run(v3)) # 2.0 print(sess.run(result1)) # [ 3.] print(sess.run(result2)) # [ 3.]
import tensorflow as tf
tf.reset_default_graph()get_variable_a = tf.get_variable("a", (2, 5))
variable_b = tf.Variable(initial_value=2.2,name="b") # initial_value 必须指定 , <tf.Variable 'b:0' shape=() dtype=int32_ref>variable_d = tf.Variable(initial_value=tf.constant(4.4, shape=[3, 4]),name="d") # <tf.Variable 'd:0' shape=(3, 4) dtype=float32_ref>
with tf.Session() as sess:
tf.global_variables_initializer().run() sess_run_a = sess.run(get_variable_a) print(type(sess_run_a)) print(sess_run_a) sess_run_b = sess.run(variable_b) print(type(sess_run_b)) print(sess_run_b) sess_run_d = sess.run(variable_d) print(type(sess_run_d)) print(sess_run_d)
[[-0.8444121 0.45873487 0.43813705 -0.20740622 0.8408555 ] [ 0.5865301 0.8926667 -0.38779628 0.23797786 -0.4147941 ]] 2.2 [[4.4 4.4 4.4 4.4] [4.4 4.4 4.4 4.4] [4.4 4.4 4.4 4.4]]